ENVIRONICS TECHNICAL BULLETIN \#105

CYLINDER K-FACTOR CALCULATION

This document describes the formula used to compute the K-factor for a gas cylinder for the Series 2000 and Series 4000 line of instruments.

$$
\begin{aligned}
& X=\text { Subscript which refers to a particular gas component in the cylinder. Each gas component is } \\
& \text { numbered from "1" to "n". The reference gas (Flow controller calibration gas) is referred to as "ref". } \\
& P_{x}=\text { Percent concentration of gas } x \text {, from } 0.0 \text { to } 1.0(1.0=100 \% \text { gas }) \\
& \mathrm{N}_{\mathrm{x}}=\text { Molecular structure correction factor for gas } \mathrm{x} \text { : } \\
& \text { Monatomic }=1.01, \quad \text { Diatomic }=1.00, \quad \text { Triatomic }=0.94, \quad \text { Polyatomic }=0.88 \\
& \mathrm{D}_{\mathrm{x}}=\text { Density of gas } \times\left(\text { grams } / \text { liter @ } 0^{\circ} \mathrm{C}\right. \text {) } \\
& \mathrm{H}_{\mathrm{x}}=\text { Specific Heat of gas } \times\left(\mathrm{cal} . / \mathrm{gram}^{\circ} \mathrm{C} @ 25^{\circ} \mathrm{C}\right)
\end{aligned}
$$

$$
\begin{aligned}
& C_{\text {ref }}=\frac{N_{\text {ref }}}{D_{\text {ref }} * H_{\text {ref }}} \quad \text { (Reference gas conversion factor) } \\
& \mathrm{K}_{\mathrm{cyl}}=\underset{\mathrm{C}_{\text {ref }}}{\mathrm{C}_{\mathrm{cyl}}} \quad \text { (Cylinder K-factor, relative to reference gas) }
\end{aligned}
$$

Example: Cylinder contains $10 \% \mathrm{C} 02,20 \% \mathrm{SO} 2$, in balance of N2. Flow controller calibrated in AIR.

Gas	Mol. structure (N)	Density (D)	Specific Heat (H)
Gas 1 = 10\% C02	0.94	1.964	0.2017
Gas 2 = 20\% SO2	0.94	2.858	0.1489
Gas 3 = 70\% N2	1.00	1.25	0.2486
Reference gas = AIR	1.00	1.293	0.2389

$$
\begin{aligned}
& (0.1 * 0.94)+(0.2 * 0.94)+(0.7 * 1.00) \\
& \mathrm{C}_{\mathrm{cyl}}= \\
& (0.1 * 1.964 * 0.2017)+(0.2 * 2.858 * 0.1489)+(0.7 * 1.25 * 0.2486) \\
& C_{\text {ref }}=------------------=3.2373 \\
& \text { (} 1.293 \text { * } 0.2389 \text {) } \\
& K_{\text {cyl }}=\frac{C_{\text {cyl }}}{--------}=0.8863
\end{aligned}
$$

